Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8151, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589538

RESUMO

This study demonstrates a novel use of the U-Net convolutional neural network (CNN) for modeling pixel-based electrostatic potential distributions in GaN metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs) with various gate and source field plate designs and drain voltages. The pixel-based images of the potential distribution are successfully modeled from the developed U-Net CNN with an error of less than 1% error relative to a TCAD simulated reference of a 500-V electrostatic potential distribution in the AlGaN/GaN interface. Furthermore, the modeling time of potential distributions by U-Net takes about 80 ms. Therefore, the U-Net CNN is a promising approach to efficiently model the pixel-based distributions characteristics in GaN power devices.

2.
Ecotoxicol Environ Saf ; 277: 116392, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677065

RESUMO

Smoking disrupts bone homeostasis and serves as an independent risk factor for the development and progression of osteoporosis. Tobacco toxins inhibit the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), promote BMSCs aging and exhaustion, but the specific mechanisms are not yet fully understood. Herein, we successfully established a smoking-related osteoporosis (SROP) model in rats and mice through intraperitoneal injection of cigarette smoke extract (CSE), which significantly reduced bone density and induced aging and inhibited osteogenic differentiation of BMSCs both in vivo and in vitro. Bioinformatics analysis and in vitro experiments confirmed that CSE disrupts mitochondrial homeostasis through oxidative stress and inhibition of mitophagy. Furthermore, we discovered that CSE induced BMSCs aging by upregulating phosphorylated AKT, which in turn inhibited the expression of FOXO3a and the Pink1/Parkin pathway, leading to the suppression of mitophagy and the accumulation of damaged mitochondria. MitoQ, a mitochondrial-targeted antioxidant and mitophagy agonist, was effective in reducing CSE-induced mitochondrial oxidative stress, promoting mitophagy, significantly downregulating the expression of aging markers in BMSCs, restoring osteogenic differentiation, and alleviating bone loss and autophagy levels in CSE-exposed mice. In summary, our results suggest that BMSCs aging caused by the inhibition of mitophagy through the AKT/FOXO3a/Pink1/Parkin axis is a key mechanism in smoking-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Mitofagia , Osteoporose , Animais , Mitofagia/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos , Osteoporose/induzido quimicamente , Osteoporose/patologia , Nicotiana/efeitos adversos , Proteína Forkhead Box O3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fumaça/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases/metabolismo , Camundongos Endogâmicos C57BL , Células da Medula Óssea/efeitos dos fármacos
3.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474557

RESUMO

This study involved the design and synthesis of a series of novel 4-chromanone-derived compounds. Their in vivo anti-cucumber mosaic virus (CMV) activity in field trials against CMV disease in Passiflora spp. was then assessed. Bioassay results demonstrated that compounds 7c and 7g exhibited remarkable curative effects and protection against CMV, with inhibition rates of 57.69% and 51.73% and 56.13% and 52.39%, respectively, surpassing those of dufulin and comparable to ningnanmycin. Field trials results indicated that compound 7c displayed significant efficacy against CMV disease in Passiflora spp. (passion fruit) after the third spraying at a concentration of 200 mg/L, with a relative control efficiency of 47.49%, surpassing that of dufulin and comparable to ningnanmycin. Meanwhile, nutritional quality test results revealed that compound 7c effectively enhanced the disease resistance of Passiflora spp., as evidenced by significant increases in soluble protein, soluble sugar, total phenol, and chlorophyll contents in Passiflora spp. leaves as well as improved the flavor and taste of Passiflora spp. fruits, as demonstrated by notable increases in soluble protein, soluble sugar, soluble solid, and vitamin C contents in Passiflora spp. fruits. Additionally, a transcriptome analysis revealed that compound 7c primarily targeted the abscisic acid (ABA) signaling pathway, a crucial plant hormone signal transduction pathway, thereby augmenting resistance against CMV disease in Passiflora spp. Therefore, this study demonstrates the potential application of these novel 4-chromanone-derived compounds as effective inducers of plant immunity for controlling CMV disease in Passiflora spp. in the coming decades.


Assuntos
Cromonas , Cucumovirus , Infecções por Citomegalovirus , Passiflora , Frutas , Resistência à Doença , Açúcares/metabolismo
4.
Stem Cells ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393380

RESUMO

Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in DOP patients.

5.
ACS Appl Mater Interfaces ; 16(1): 467-475, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133905

RESUMO

Potassium-ion batteries (PIBs) possess great potential in the next generation of large-scale energy storage due to their abundant sources and suitable operating voltage. However, the serious volume expansion resulting from the large radius of K+ makes it difficult to insert and extract, which greatly limits the development of PIBs. Herein, tin phosphide coated with carbon (Sn4P3@C) is designed for the PIB anode material by in situ construction of robust physical barriers of carbonaceous materials to accommodate the strain induced by volume expansion. Furthermore, the unique elastic restraint induced by the carbon coating in Sn4P3@C blocks the phase transition of α-Sn to ß-Sn during the process of potassiation. Meanwhile, the existence of α-Sn facilitates K+ diffusion dynamics, endowing the Sn4P3@C electrode with high reversible discharge ability, good circularity, and a low discharge plateau. Moreover, the electrode can maintain a capacity of 187 mAh g-1 over repeated 1500 cycles at 1 A g-1. This work not only explores the chemical kinetics of K+ in Sn4P3 but also provides a new idea for basic research of tin-based anode materials.

6.
ACS Appl Mater Interfaces ; 15(32): 38682-38692, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539689

RESUMO

Silicon nanoparticles (Si NPs) supporting Mie resonances exhibit vivid structural colors on the subwavelength scale. For future wearable devices, next generation Si-based optical units need to be dynamic and stretchable for display, sensing, or signal processing required by human-computer interaction. Here, by utilizing the distance-sensitive electromagnetic coupling of Mie resonances, we maximize the active tuning effect of Si NP-based structures including dimers, oligomers, and NPs on WS2, which we called Si nanopixels. Through the optical tweezers-assisted printing of Si nanopixels, patterns can be formed on arbitrary flexible substrates. The strain-sensitive tuning of scattering spectra indicates their promising application on strain sensing of various stretchable substrates via a simple "spray and test" process. In the case of Si nanopixels on polydimethylsiloxane (PDMS), local strains around 1% can be detected by a scattering measurement. Moreover, we demonstrate that the scattering intensity variation of Si nanopixels printed on wrinkled tungsten disulfide (WS2) is pixel-dependent and wavelength-dependent. This property facilitates the application of information encryption, and we demonstrate that three barcodes can be independently encoded into the R, G, and B scattering channels through ternary logic represented by the strain-tuning effects of scattering.

7.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513115

RESUMO

In this study, we comprehensively investigate the constant voltage stress (CVS) time-dependent breakdown and cycle-to-breakdown while considering metal-ferroelectric-metal (MFM) memory, which has distinct domain sizes induced by different doping species, i.e., Yttrium (Y) (Sample A) and Silicon (Si) (Sample B). Firstly, Y-doped and Si-doped HfO2 MFM devices exhibit domain sizes of 5.64 nm and 12.47 nm, respectively. Secondly, Si-doped HfO2 MFM devices (Sample B) have better CVS time-dependent breakdown and cycle-to-breakdown stability than Y-doped HfO2 MFM devices (Sample A). Therefore, a larger domain size showing higher extrapolated voltage under CVS time-dependent breakdown and cycle-to-breakdown evaluations was observed, indicating that the domain size crucially impacts the stability of MFM memory.

8.
ACS Biomater Sci Eng ; 9(8): 4735-4746, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428711

RESUMO

Extracellular matrix (ECM) stiffness is a key stimulus affecting cellular differentiation, and osteoblasts are also in a three-dimensional (3D) stiff environment during the formation of bone tissues. However, it remains unclear how cells perceive matrix mechanical stiffness stimuli and translate them into intracellular signals to affect differentiation. Here, for the first time, we constructed a 3D culture environment by GelMA hydrogels with different amino substitution degrees and found that Piezo1 expression was significantly stimulated by the stiff matrix with high substitution; meanwhile, the expressions of osteogenic markers OSX, RUNX2, and ALP were also observably improved. Moreover, knockdown of Piezo1 in the stiff matrix revealed significant reduction of the abovementioned osteogenic markers. In addition, in this 3D biomimetic ECM, we also observed that Piezo1 can be activated by the static mechanical conditions of the stiff matrix, leading to the increase of the intracellular calcium content and accompanied with a continuous change in cellular energy levels as ATP was consumed during cellular differentiation. More surprisingly, we found that in the 3D stiff matrix, intracellular calcium as a second messenger promoted the activation of the AMP-activated protein kinase (AMPK) and unc-51-like autophagy-activated kinase 1 (ULK1) axis and modestly modulated the level of autophagy, bringing it more similar to differentiated osteoblasts, with increased ATP energy metabolism consumption. Our study innovatively clarifies the regulatory role of the mechanosensitive ion channel Piezo1 in a static mechanical environment on cellular differentiation and verifies the activation of the AMPK-ULK1 axis in the cellular ATP energy metabolism and autophagy level. Collectively, our research develops the understanding of the interaction mechanisms of biomimetic extracellular matrix biomaterials and cells from a novel perspective and provides a theoretical basis for bone regeneration biomaterials design and application.


Assuntos
Proteínas Quinases Ativadas por AMP , Osteogênese , Trifosfato de Adenosina , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Materiais Biocompatíveis , Cálcio , Diferenciação Celular/genética , Osteogênese/genética , Animais , Camundongos
9.
J Nanobiotechnology ; 21(1): 229, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468894

RESUMO

The inflammatory immune environment surrounding titanium bone implants determines the formation of osseointegration, and nanopatterning on implant surfaces modulates the immune microenvironment in the implant region. Among many related mechanisms, the mechanism by which nanopatterning controls macrophage inflammatory response still needs to be elucidated. In this paper, we found that inhibition of the nuclear envelope protein lamin A/C by titania nanotubes (TNTs) reduced the macrophage inflammatory response. Knockdown of lamin A/C reduced macrophage inflammatory marker expression, while overexpression of lamin A/C significantly elevated inflammatory marker expression. We further found that suppression of lamin A/C by TNTs limited actin polymerization, thereby reducing the nuclear translocation of the actin-dependent transcriptional cofactor MRTF-A, which subsequently reduced the inflammatory response. In addition, emerin, which is a key link between lamin A/C and actin, was delocalized from the nucleus in response to mechanical stimulation by TNTs, resulting in reduced actin organization. Under inflammatory conditions, TNTs exerted favourable osteoimmunomodulatory effects on the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) in vitro and osseointegration in vivo. This study shows and confirms for the first time that lamin A/C-mediated nuclear mechanotransduction controls macrophage inflammatory response, and this study provides a theoretical basis for the future design of immunomodulatory nanomorphologies on the surface of metallic bone implants.


Assuntos
Lamina Tipo A , Nanotubos , Camundongos , Animais , Actinas , Osteogênese , Mecanotransdução Celular , Macrófagos , Titânio/farmacologia , Propriedades de Superfície
10.
Discov Nano ; 18(1): 79, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37382742

RESUMO

In this work, we demonstrated Ga2O3-based power MOSFETs grown on c-plane sapphire substrates using in-situ TEOS doping for the first time. The ß-Ga2O3:Si epitaxial layers were formed by the metalorganic chemical vapor deposition (MOCVD) with a TEOS as a dopant source. The depletion-mode Ga2O3 power MOSFETs are fabricated and characterized, showing the increase of the current, transconductance, and breakdown voltage at 150 °C. In addition, the sample with the TEOS flow rate of 20 sccm exhibited a breakdown voltage of more than 400 V at RT and 150 °C, indicating that the in-situ Si doping by TEOS in MOCVD is a promising method for Ga2O3 power MOSFETs.

11.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241810

RESUMO

A magnetically induced self-assembled graphene nanoribbons (GNRs) method is reported to synthesize MFe2O4/GNRs (M = Co,Ni). It is found that MFe2O4 compounds not only locate on the surface of GNRs but anchor on the interlayers of GNRs in the diameter of less than 5 nm as well. The in situ growth of MFe2O4 and magnetic aggregation at the joints of GNRs act as crosslinking agents to solder GNRs to build a nest structure. Additionally, combining GNRs with MFe2O4 helps to improve the magnetism of the MFe2O4. As an anode material for Li+ ion batteries, MFe2O4/GNRs can provide high reversible capacity and cyclic stability (1432 mAh g-1 for CoFe2O4/GNRs and 1058 mAh g-1 for NiFe2O4 at 0.1 A g-1 over 80 cycles).

12.
ACS Appl Mater Interfaces ; 15(21): 25838-25848, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202222

RESUMO

In this work, the ultrathin two-dimensional (2D) indium oxide (InOx) with a large area of more than 100 µm2 and a high degree of uniformity was automatically peeled off from indium by the liquid-metal printing technique. Raman and optical measurements revealed that 2D-InOx has a polycrystalline cubic structure. By altering the printing temperature which affects the crystallinity of 2D-InOx, the mechanism of the existence and disappearance of memristive characteristics was established. The tunable characteristics of the 2D-InOx memristor with reproducible one-order switching was manifest from the electrical measurements. Further adjustable multistate characteristics of the 2D-InOx memristor and its resistance switching mechanism were evaluated. A detailed examination of the memristive process demonstrated the Ca2+ mimic dynamic in 2D-InOx memristors as well as the fundamental principles underlying biological and artificial synapses. These surveys allow us to comprehend a 2D-InOx memristor using the liquid-metal printing technique and could be applied to future neuromorphic applications and in the field of revolutionary 2D material exploration.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903676

RESUMO

Ir-based perovskite oxides are efficient electrocatalysts for anodic oxygen evolution. This work presents a systematic study of the doping effects of Fe on the OER activity of monoclinic SrIrO3 to reduce the consumption of Ir. The monoclinic structure of SrIrO3 was retained when the Fe/Ir ratio was less than 0.1/0.9. Upon further increases in the Fe/Ir ratio, the structure of SrIrO3 changed from a 6H to 3C phase. The SrFe0.1Ir0.9O3 had the highest activity among the investigated catalysts with the lowest overpotential of 238 mV at 10 mA cm-2 in 0.1 M HClO4 solution, which could be attributed to the oxygen vacancies induced by the Fe dopant and the IrOx formed upon the dissolution of Sr and Fe. The formation of oxygen vacancies and uncoordinated sites at the molecular level may be responsible for the improved performance. This work explored the effect of Fe dopants in boosting the OER activity of SrIrO3, thus providing a detailed reference to tune perovskite-based electrocatalyst by Fe for other applications.

14.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838123

RESUMO

In this study, AlGaN/GaN light-emitting HEMTs (LE-HEMT) with a single quantum well inserted in different locations in the epitaxy layers are fabricated and analyzed. For both structures, light-emitting originated from electrons in the 2DEG and holes from the p-GaN for radiative recombination is located in the quantum well. To investigate the importance of the location of single quantum well, optical characteristics are compared by simulation and experimental results. The experimental results show that the main light-emitting wavelength is shifted from 365 nm in the UV range to 525 nm in the visible range when the radiative recombination is confined in the quantum well and dominates among other mechanisms. Epi B, which has a quantum well above the AlGaN barrier layer in contrast to Epi A which has a quantum well underneath the barrier, shows better intensity and uniformity in light-emitting. According to the simulation results showing the radiative distribution and electron concentrations for both structures, the lower quantum efficiency is due to the diverse current paths in Epi A. On the other hand, Epi B shows better quantum confinement and therefore better luminescence in the same bias condition, which is consistent with experimental observations. These findings are critical for advancing the performance of LE-HEMTs.

15.
Biosens Bioelectron ; 221: 114931, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436468

RESUMO

Light-driven micromotors with high spatial resolution are powerful tools for targeted drug delivery and biomedical diagnosis. To combine the function of biosensing, light-driven micromotors have been modified with fluorescence materials such as quantum dots or dyes. However, these fluorescence micromotors are generally driven and excited by ultraviolet or visible lights, which may cause photo-damage to biological cells or tissues. Here we propose upconversion fluorescence micromotors (UCFMs) constructed by lanthanide (NaYF4: Yb3+, Er3+) doped microrods that were driven and excited by near-infrared lights. The UCFMs were moved to the surfaces of the targeted cancer cells using scanning optical tweezers (SOTs). The upconversion fluorescence spectra were measured to determine the temperatures of the cells, with an absolute sensitivity from 1.71 × 10-3 to 1.74 × 10-3 K-1 and a relative sensitivity from 0.53% to 0.68% K-1. The UCFMs were then optically driven to actuate the local flow to deliver the polystyrene (PS) microparticles and doxorubicin-loaded mesoporous silica nanoparticles to the vicinity of the cancer cells. By integrating the actuator and sensor into a single device, the UCFMs hold great potential for applications to precise biosensing, single-cell biomedical analysis, and targeted drug delivery.


Assuntos
Técnicas Biossensoriais , Elementos da Série dos Lantanídeos , Pontos Quânticos , Corantes , Sistemas de Liberação de Medicamentos
16.
Front Plant Sci ; 13: 1022961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407630

RESUMO

The gibberellic acid (GA)-stimulated Arabidopsis (GASA) gene family is highly specific to plants and plays crucial roles in plant growth and development. CcGASA4 is a member of the GASA gene family in citrus plants; however, the current understanding of its function in citrus is limited. We used CcGASA4-overexpression transgenic citrus (OEGA) and control (CON) plants to study the role of CcGASA4 in Shatian pomelo. The RNA sequencing (RNA-seq) analysis showed that 3,522 genes, including 1,578 upregulated and 1,944 downregulated genes, were significantly differentially expressed in the CON versus OEGA groups. The Gene Ontology enrichment analysis showed that 178 of the differentially-expressed genes (DEGs) were associated with flowers. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in 134 pathways, including "plant-pathogen interaction", "MAPK signaling pathway-plant", "phenylpropane biosynthesis", "plant hormone signal transduction", "phenylalanine, tyrosine and tryptophan biosynthesis", and "flavonoid and flavonol biosynthesis". The most significantly-enriched pathway was "plant-pathogen interaction", in which 203 DEGs were enriched (126 DEGs were upregulated and 78 were downregulated). The metabolome analysis showed that 644 metabolites were detected in the OEGA and CON samples, including 294 differentially-accumulated metabolites (DAMs; 83 upregulated versus 211 downregulated in OEGA compared to CON). The metabolic pathway analysis showed that these DAMs were mainly involved in the metabolic pathways of secondary metabolites, such as phenylpropanoids, phenylalanine, flavone, and flavonol biosynthesis. Thirteen flavonoids and isoflavones were identified as DAMs in OEGA and CON. We also discovered 25 OEGA-specific accumulated metabolites and found 10 that were associated with disease resistance. CcGASA4 may therefore play a functional role in activating the expression of MAPK signaling transduction pathway and disease resistance genes, inhibiting the expression of auxin- and ethylene-related genes, and activating or inhibiting the expression of brassinosteroid biosynthesis- and abscisic acid-related genes. CcGASA4 may also play a role in regulating the composition and abundance of flavonoids, isoflavones, amino acids, purines, and phenolic compounds. This study provides new insights into the molecular mechanisms of action of CcGASA4 in citrus plants.

17.
Adv Mater ; 34(38): e2205563, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35918709

RESUMO

Due to the intrinsic lack of spatial order and self-supported shape, liquids are often incompatible with precision manufacturing/processing and are potentially limited for advanced functionality. Herein, an optothermal strategy is developed to fully command phase-separated liquids with unprecedented spatiotemporal addressability. Specifically, a laser is focused onto an Au film to create a hot spot that locally demixes a temperature-responsive solution to produce a single optothermal droplet. Spatial precision is assured by the well-defined thermal field and temporal accuracy guaranteed by the fast heating and response rate. Time-multiplexed laser foci are deployed to engineer the thermal landscape as desired, which in turn dictates the formation/dissolution, positioning, shaping, and dynamic reconfiguration of the phase-separated liquids. Further, laser foci are programmed to orchestrate the liquid patterns in a time-continuous manner to produce liquid animations on the microscale with high fidelity. While focused lasers are routinely used to manipulate solid particles or to microfabricate solid materials, the current strategy embraces the merits of liquids and features functional complexity in information encryption, payload transportation, and reaction localization. The strategy is further applicable in scenarios such as subcellular organization of biomolecular condensates and programmable modulation of non-equilibrium systems.


Assuntos
Lasers , Temperatura
18.
Biomed Opt Express ; 13(5): 2995-3004, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35774333

RESUMO

We demonstrate that red blood cells (RBCs), with an adjustable focusing effect controlled by optical forces, can act as bio-microlenses for trapping and imaging subwavelength objects. By varying the laser power injected into a tapered fiber probe, the shape of a swelled RBC can be changed from spherical to ellipsoidal by the optical forces, thus adjusting the focal length of such bio-microlens in a range from 3.3 to 6.5 µm. An efficient optical trapping and a simultaneous fluorescence detecting of a 500-nm polystyrene particle have been realized using the RBC microlens. Assisted by the RBC microlens, a subwavelength imaging has also been achieved, with a magnification adjustable from 1.6× to 2×. The RBC bio-microlenses may offer new opportunities for the development of fully biocompatible light-driven devices in diagnosis of blood disease.

19.
Front Bioeng Biotechnol ; 10: 899293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662836

RESUMO

The guided tissue regeneration (GTR) technique is a promising treatment for periodontal tissue defects. GTR membranes build a mechanical barrier to control the ingrowth of the gingival epithelium and provide appropriate space for the regeneration of periodontal tissues, particularly alveolar bone. However, the existing GTR membranes only serve as barriers and lack the biological activity to induce alveolar bone regeneration. In this study, sericin-hydroxyapatite (Ser-HAP) composite nanomaterials were fabricated using a biomimetic mineralization method with sericin as an organic template. The mineralized Ser-HAP showed excellent biocompatibility and promoted the osteogenic differentiation of human periodontal membrane stem cells (hPDLSCs). Ser-HAP was combined with PVA using the freeze/thaw method to form PVA/Ser-HAP membranes. Further studies confirmed that PVA/Ser-HAP membranes do not affect the viability of hPDLSCs. Moreover, alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and RT-qPCR detection revealed that PVA/Ser-HAP membranes induce the osteogenic differentiation of hPDLSCs by activating the expression of osteoblast-related genes, including ALP, Runx2, OCN, and OPN. The unique GTR membrane based on Ser-HAP induces the differentiation of hPDLSCs into osteoblasts without additional inducers, demonstrating the excellent potential for periodontal regeneration therapy.

20.
ACS Appl Mater Interfaces ; 14(26): 29905-29915, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737889

RESUMO

Potassium-ion batteries (PIBs) possess great potential in new-generation large-scale energy storage. However, their applications are plagued by large volume change and sluggish reaction kinetics of the electrode materials during the repeated charge/discharge processes. Guided by computerization modeling, we, herein, report the atomic-scale interfacial regulation of Sb4O5Cl2 coupled with structural engineering for the robust anode material of PIBs via simple MXene hybridization using a microwave-assisted hydrothermal method. Benefiting from the ostensive interfacial interplay between Sb4O5Cl2 and Ti3C2, MXene hybridization induces a favorable variation in spin polarization densities and the coordination of Sb atoms in Sb4O5Cl2, which are effective in optimizing the K+ ion diffusion path, thus resulting in a significantly reduced K+ ion diffusion barrier and promoted K+ insertion/extraction kinetics. The as-prepared Sb4O5Cl2-MXene anodes exhibit a highly reversible discharge capacity and decent cyclability, in addition to the low discharge plateau and promising full cell performance. This work is pivotal for not only paving the way for the exploration of anode materials for high-performance PIBs but also shedding light on the fundamental research on K+ ion storage in antimony oxychloride.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA